
is seen for the more viscous fluid which lags behind the displacement front. Here, the most 
prolate drops lag the farthest behind the front. 
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NONSTEADY THERMAL CONVECTION IN A HORIZONTAL CYLINDER WITH A 

NONUNIFORM DISTRIBUTION OF THE TEMPERATURE OF THE BOUNDARIES 

B. G. Petrazhitskii and N. M. Stankevich UDC 536.25 

Many studies have examined natural convection in a horizontal cylinder. Nonsteady 
natural convection in closed rectangular and spherical cavities was examined in [I, 2]. A 
survey of different studies can be found in [3J, while the latest publications are discussed 
in [4]. Some of these investigations consider the effect of a nonuniform distribution of 
the temperature of the boundaries. In particular, Gershuni et al. [5] and Ostrakh et al. 
[6J used approximate analytical methods to obtain information on local and integral charac- 
teristics of the given phenomenon in a steady-state regime. The authors made several sim- 
plifying assumptions that limited the range of application of the results. Thus, the data 
in [5] was obtained in a boundary-layer approximation, while the data in [6] is valid only 
for large Prandtl numbers and for Grashof numbers on the order of unity. The range of phase 
angles corresponding to cosine distributions of boundary temperature 0 < ~ < ~/2 (Fig. i), 
except for the region of the points ~ = 0 (heating from the side) and ~ = z/2 (heating from 
below). 

A numerical solution to the problem was described in [7] for-w/2 < ~ < v/2. Extensive 
information was presented on the streamlines and isotherms for different ~ and Pr = i. In 
contrast to the present study, the results in [7] pertain only to the steady-state regime 
and contain no information on velocity and temperature fields or local heat-transfer charac- 
teristics. 

We attempted to solve the complete system of Navier-Stokes equations by numerical meth- 
ods to obtain data on the process of establishment of a steady-regime and fill in the missing 
data for it for the range 104 < Ra < 107 and Pr = 0.68 (helium) at -~/2 < ~ ~ 0. 

The given phenomenon has several important practical applications and is described by 
the system of equations of motion, continuity, and energy. We will study the two-dimensional 
laminar flow of an incompressible fluid with constant physical properties and a linear tem- 
perature dependence of density. After we exclude pressure and introduce the stream function 
~, this system takes the following form in polar coordinates (r, @) for the conditions of 
the given problem (w is curl and ~ is temperature): 

Gorky. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. i, 
pp. 71-77, January-February, 1991. Original article submitted January 23, 1988; revision 
submitted June 26, 1989. 
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where the components of the velocity vector are connected with the stream function by the re- 

t O~ O~ We used the following scales to reduce (1)-(3) to dimension- lations vr = - - ; - - ~ - ,  v o = Or" 

less form: vGr) stream function; vGr/R02) curl; vGr/R 0) velocity; R0=/vGr) time; R 0) linear 
dimensions (R 0 is the radius of a cylindrical cavity - see Fig. i); Gr = gR036AT/v 2 is the 
Grashof number; Pr = v/e is the Prandtl number; Ra = GrPr is the Rayleigh number; ~ = (T - To)/ 

AT is temperature; AT = (Tma x - Tmin)/2, To = (Tma x + Tmin)/2. 

The boundary conditions for the system of equations satisfy the requirement of imperme- 
ability of the boundaries and the adhesion conditions: 8~/8r = 8~/80 = 0 at r = i. The tem- 
perature of the boundaries changed in accordance with the law ~ = cos(0 + ~) at r = i, where 

is the phase angle (see Fig. i) corresponding to the maximum temperature on the inside sur- 
face of the cylinder. Approximately the same temperature distribution over the surface of a 
container is seen, for example, in the heating of a balloon by the sun. 

We assumed that the fluid (gas) was initially in a state of mechanical equilibrium and 
that its temperature was equal to zero. We also studied the processes involved in estab- 
lishment of a steady state. As the initial data for these processes, we used the fields of 
~, m, and ~ obtained in previous computing variants (with lower Ra or other ~). 

To solve system (1)-(3), we chose its finite-difference analog 

~ i 6~  n 6o  n 6~ n 6~  t ( 6 ~  n sin Oj 6 ~  n t 1 6~ n t 
Ax ~ r-- T 6r 50 60 5r - - G - T \  6r Cos0j  r i 60 + - ~ k - - ~ r  ~ + ri 6--7-+ r~ -~:E ) ;  (4) 

0,5o 6r ~ r i 26r 

J)'a+l'lhJ-1 n + l  kj-1/2 62 ( ~ n + l ) h + l / 2  ~,J j - ( % j  ) 
0.5o = 5r 2 

t 6 ~ ( ~ + ~ ) ~  ~+~ 
2 602 (Oi,j 

r i 

t 5 ( r  t 6 2 ( ~ n + l ) h + l  

~- r i 26r -[- 2 602 r i 

n + l .  
- -  ( O i ,  j , 

(5) 

O n + l  __ r [ 6xpn+l i,j ~,.~ = __t 6d )n 
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where the difference operators 
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The procedure used to calculate the unknown functions is as follows. Using the known 
values of ~i,j n, ~i,j n, ~i,j n, we determine w i,J.n+1 from (4). Then using the difference 

scheme for the direction variables (5) for each time layer we find ~. .n+l by the method 1,3 
of iteration (where o is the iteration parameter) At the boundary nodes w N .n+l = 

�9 ,3 

8 ~ n + l  ~ n + l  
N--IJ--vN--~'J where N is the number of nodes along the coordinate r. In accordance with 

2At ~ 

(6), with allowance for the boundary conditions we obtain ~i,j n+1. At the point r = 0, 

fl .n+1 _- __i Z~n• �9 The cycle is then repeated. Calculations were performed on grids with 
,J M 

j=l 

the dimensions 21 • 21, 21 • 41, and 41 x 41. The main series of solutions was obtained on 
a 21 • 21 grid. 

Let us examine the laws governing the development of natural convection at q = -~/5 and 
Ra = 44,640. An analysis of the solutions shows that the process of establishment of a 
steady state can be broken down into three stages. At F 0 ~ 0.6"10 -2 , we have the initial 
stage, with the effect of heat conduction being dominant. This is indicated by the cosine 
distribution law for the Nusselt numbers Nu(8) = (8~/Sr)r= I = qstR0/IAT along the boundaries 
of the container. That convection is neligible at this stage and can be inferred from the 
coincidence of the angular positions of the extreme values of Nu and the positions of ~max 
and ~min given in the boundary conditions (Fig. 2). The family of curves Nu(8) constructed 
for F 0 = a~i/Ro 2 [curve i) F = 0.163"10-2; 2) 0.387"10-2; 3) 0.176"10-i; 4) 0.316"10-!; 5) 
0.37] shows that the decrease in the Nusselt numbers with an increase in F 0 is slowed, while 
the points corresponding to heat flux qst = 0 at this stage remain nearly stationary along 
the boundary over time�9 For example, the numbers F 0 = 0.79"10-3; 0�9149 0.64.10 -2 corre- 
spond to the values Numa x = 20.6; 11.5; 7.1. As it is heated, the fluid moves along the 
boundaries of the container in the counterclockwise direction, forming a slow-moving core 
(with r < 0�9 v 8 < 0.5,10 -4 ) with a complex two-vortex flow structure in the central part. 
The streamlines near the boundaries are close to being circles�9 The tangential component of 
velocity v 8 is directed counterclockwise. With a decrease in radius, the streamlines devi- 
ate from the center in dialnetrically opposite directions in the form of a figure eight, and 
vortex structures with a counterclockwise rotation are formed in the loops of this figure. 
The centers of the vortices are located at the ends of a diameter inclined to the horizontal 
at an angle @ z 22 ~ with F 0 = 0.6.10 -2 The temperature of the fluid changes significantly 
only near the walls (the upper left quadrant in Fig. 3, F 0 = 0.387.10-2). The enumeration 
of the profiles of r and vs(r) in Figs. 3 and 4 correspond to the angular marking in Fig. 
I. At r < 0.8, the isothermal region with the temperature ~ = 0 remains intact. 
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The temperature and velocity profiles corresponding to the same given diameter are 
characterized by inverse symmetry relative to the coordinate origin (r = 0). This property 
remains in later stages of the heat-transfer process. Using it for the family of profiles 
of temperature @(r) and velocity v@(r) shown in Figs. 3 and 4 for different @ and F0, we can 
construct profiles for the other half of the cylinder. 

The second, transitional stage begins at 0.6.10 -2 < F0 < 0.15 and is characterized by 
intensive development of convection in the cavity and restructuring of the velocity and tem- 
perature fields. Over time the level of velocities v@ rapidly rises throughout the region, 
including the previously slow-moving central zone. The action of the field of external body 
forces causes the convective flow near the boundaries to be directed upward along the heated 
wall and downward along the cold wall. In the initial stage, the streamlines are bunched in 
the boundary layer, with the angles @ z v/10 and ii~/i0, 0.85 < r < 0.95. Then as velocity 
level increases, the region of highest streamline density and, thus, greatest flow rate 
shifts in the direction of the flow. The velocity profiles vs(r) are different for each 
polar angle e and have extrema. At each moment of time, for Vemax in the flow field there 
is a certain angle @ = @max at which it gradually increases with an increase in F0 in the 
first stage, beginning from @max = ~/i0. The value of 8max increases in the second stage, 
reaching its highest value ~/4 at F 0 ~ 0.025. It decreases at F0 ~ 0.025 and approaches zero 
by the end of the stage. In particular, at F 0 = 0.275.10 -2 V@max = 0.29.10 -3 , 8ma x = ~/i0, 
while at F 0 = 0.176.10 -I V@max = 0.143"10 -2 , @max ~ 27/10. The highest value Vemax = 0.164. 
10 -2 is reached at F0 = 0.025. The character of the velocity profiles vs(r) constructed 
for different F0 shows that in the third stage the largest change in the structure of the 
velocity field occurs in the central part of the cylinder, rather than near the wall. 

Figure 5 shows the streamlines and isotherms obtained at Ra = 44,640, ~ = -~/5, F0 = 
0.0316, corresponding to the second stage of the process of establishment of a steady state. 
The penetration of the colder zones by the heated boundary layers of fluid and vice versa 
is evident on the isotherms for different F 0. In the second stage, the lines of the iso- 
therms in the boundary region take the form of projections directed the same as the flow. 
On the temperature profiles, this is evident from the points of inflection on the curves 
and, later, the extrema at certain @ (see Fig. 3, F 0 = 0.316-i0 -l, F0 = 0.37). 

The motion of the layers of liquid relative to the wall leads to a shift in the extreme 
values of Nu in the counterclockwise direction (see Fig. 2) for F0 > 0.387"10 -2 (second 
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stage of the process). The heated region, rising along the wall~ reduces (8~/Sr)r= I. Con- 
versely, the downstream regions help increase (8~/Sr)r= z as they are induced to move. It is 
evident from the change in the temperature profiles and the isotherms that the temperature 
field in the boundary layer has for the most part already been formed by the beginning of 
the second stage, while the formation of the structure of the temperature field in the core 
continues until a steady-state regime has been completely established. This feature of the 
establishment process is reflected in the character of the distribution of Nu(@) along the 
boundaries of the cylinder. The formation of the temperature field in the boundary layer is 
accompanied by the assumption of more or less stable positions by the extrema Numax(@), 
Numin(@) with respect to both phase and amplitude at F 0 e 0.9"10 -2 . Later, as a stratified 
temperature field is formed in the central region as a result of thermal interaction of this 
region and the periphery, characteristic steps appear on the curves Nu(8). Over time, these 
steps are displaced in the direction of the flow and ultimately merge with the extrema (see 
Fig. 2, F 0 ~ 0.176"i0-z). 

The formation of the internal structure of the flow is nearly complete by the end of 
the third stage F 0 ~ 0.15. There is almost no change in the velocity and temperature fields 
over time. A slow-moving core with a characteristic vertical temperature stratification is 
formed in the central part of the cylinder (r < 0.6). The largest temperature gradients at 
the boundaries (8@/Sr)r= I and, thus, the most extreme values of Nu(@) relative to the first 
stage are phase-shifted counter to the flow by the angle ~48 ~ The curve Nu(@) is close to 
a sinusoid. The velocity profiles v@(r) have extrema near the boundaries at 0.8 < r < 0.9. 
As in the first stage, in the steady-state regime the largest valuev@max corresponds to 
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TABLE i 

Ila 

0,446-103 

0.446. tO 6 

AO=I~O+Omaxl, deg 

27 

30,6 

47,7 
52.5 

~=--2.w/5 

63,5 

70.2 

ema x = ~/i0 (see Fig. 4, F 0 = 0.37). At F0 > 0.2 a weak ellipsoidal eddy appears in the 
central part of the region. This eddy rotates slowly in the clockwise direction (Fig. 6, 
F 0 = 0.37, ~ = -~/5, Ra = 44,640). 

The characteristic signs of all of the stages of restructuring of the flow with zero 
initial conditions turned out to be the same for the range of phase angles -~/5 i ~ ~ 0. In 
the case when the process of establishment of the steady-state regime begins from a state of 
hydrodynamic equilibrium corresponding to other values of Ra or ~, the fundamental laws re- 
main the same only for the last two stages. 

We analyzed the results of the numerical solution by the methods of the theory of simi- 
litude and dimensional theory. This analysis allowed us to obtain a generalized criterional 
formula to calculate the mean Nusselt numbers <Nu> at boundary nodes lying on a semicircle 
and corresponding to qst(0) = 0. For the conditions of the steady-state regime, these num- 
bers have the form <Nu> =cRa n, where n = 0.0355~ + 0.3106, c = 0.1823- 0.3"10-4exp - 
(-6.25779). 

The position of Numa x depends on Ra and ~. Table 1 shows values of Ae = [~ + emax[ for 
certain solutions. The given criterional relation can be used at i0 ~ < Ra < 107 within the 
range -~/2 < ~ S 0. 

An analysis of the effect of the mesh of the grid on the solutions that were obtained 
shows that the greatest effect is seen with the selection of a small step for r, while 
choosing a small step for 8 has less of an effect. The influence of the step of the differ- 
ence grid with respect to the value of Numa x can be judged on the basis of the following 
data (where N is the number of nodes for the coordinate r, M the number for 0, Ra = 4.5"I0 s, 
and 9 = 0): N x M = 21 x 21, 21 x 41, 41 x 41, Numa x = 19.4, 19.5, 16.6, respectively. 
Large differences in the distribution of the local Nu(8) on different grids were seen only 
on relatively small sections of the boundaries: 0ma x • ~/I0 and 8mi n • ~/I0. An increase 
in the number of nodes for the coordinate r led to a decrease in [Nu(0)[. 
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